skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kalinowski, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building a knowledge graph is a time-consuming and costly process which often applies complex natural language processing (NLP) methods for extracting knowledge graph triples from text corpora. Pre-trained large Language Models (PLM) have emerged as a crucial type of approach that provides readily available knowledge for a range of AI applications. However, it is unclear whether it is feasible to construct domain-specific knowledge graphs from PLMs. Motivated by the capacity of knowledge graphs to accelerate data-driven materials discovery, we explored a set of state-of-the-art pre-trained general-purpose and domain-specific language models to extract knowledge triples for metal-organic frameworks (MOFs). We created a knowledge graph benchmark with 7 relations for 1248 published MOF synonyms. Our experimental results showed that domain-specific PLMs consistently outperformed the general-purpose PLMs for predicting MOF related triples. The overall benchmarking results, however, show that using the present PLMs to create domain-specific knowledge graphs is still far from being practical, motivating the need to develop more capable and knowledgeable pre-trained language models for particular applications in materials science. 
    more » « less
  2. Metal-Organic Frameworks (MOFs) are a class of modular, porous crystalline materials that have great potential to revolutionize applications such as gas storage, molecular separations, chemical sensing, catalysis, and drug delivery. The Cambridge Structural Database (CSD) reports 10,636 synthesized MOF crystals which in addition contains ca. 114,373 MOF-like structures. The sheer number of synthesized (plus potentially synthesizable) MOF structures requires researchers pursue computational techniques to screen and isolate MOF candidates. In this demo paper, we describe our effort on leveraging knowledge graph methods to facilitate MOF prediction, discovery, and synthesis. We present challenges and case studies about (1) construction of a MOF knowledge graph (MOF-KG) from structured and unstructured sources and (2) leveraging the MOF-KG for discovery of new or missing knowledge. 
    more » « less